📚 R Code Vault by MALAK
💠ONE
Copy Code
REGNO <- c(101,102,103,104,105)
STUDENTNAME <- c("Aakash","Sethu","Prahadeesh","Kala","Mala")
TAMIL <- c(67,78,89,45,35)
ENGLISH <- c(56,67,78,89,75)
MATHS <- c(56,35,23,89,78)
SCIENCE <- c(56,67,89,98,76)
SOCIAL <- c(56,67,78,89,45)
df<- data.frame(REGNO, STUDENTNAME, TAMIL, ENGLISH, MATHS, SCIENCE, SOCIAL)
write.csv(df,"E:/2024_2025/Rlab/studentinfo1.csv", row.names = FALSE, col.names = TRUE)
data<- df[-c(5), ]
print("Before Deletion")
print(df)
df<- df[ -c(3), ]
print("After Deletion")
print(df)
💠TWO
Copy Code
getwd()
setwd("E:/2024_2025/Rlab")
getwd()
datas <- read.csv("MARK.csv")
print(datas)
data <- data.frame(
REGNO = 1:4,
Name = c("A", "B", "C", "D"),
TAMIL = c(67, 76, 88, 90),
ENGLISH = c(67, 76, 88, 90),
MATHS = c(67, 76, 88, 90),
SCIENCE = c(67, 76, 88, 90),
SOCIAL = c(67, 76, 88, 90)
)
write.table(data, file = "MARK.csv", row.names = FALSE)
layout(matrix(c(1,1,2,2,3,3,0,4,4,5,5,0), nrow=2, ncol=6, byrow=TRUE), respect=FALSE)
hist(data$TAMIL)
hist(data$ENGLISH)
hist(data$MATHS)
hist(data$SCIENCE)
hist(data$SOCIAL)
💠THREE
Copy Code
set.seed(123)
mean_value <- 5
sd_value <- 2
num_samples <- 1000
random_numbers <- rnorm(num_samples, mean = mean_value, sd = sd_value)
print(head(random_numbers))
hist(random_numbers)
💠FOUR
Copy Code
Z <- rnorm(255, 0, 1)
u <- 0.3
sd <- 0.2
s <- 100
price <- c(s)
a <- 2
t <- 1:256
for(i in Z) {
S = s + s * (u / 255 + sd / sqrt(255) * i)
price[a] <- S
s = S
a = a + 1
}
plot(t, price, main = "Time series stock X", xlab = "time", ylab = "price",
type = "l", col = "blue")
summary(price)
statistics <- c(sd(price), mean(price), (price[256] - price[1]) / price[1] * 100)
names(statistics) <- c("Volatility", "Average price", "Return %")
print(statistics)
💠FIVE
Copy Code
library(GA)
fitness_function <- function(ch) {
n <- binary2decimal(ch)
if (n == 0) return(-1e6)
-abs(exp(1) - (1 + 1/n)^n)
}
gaControl("binary" = list(
selection = "ga_rwSelection",
crossover = "gabin_spCrossover",
mutation = "gabin_raMutation"
))
myga <- ga(
type = "binary",
fitness = fitness_function,
nBits = 10,
popSize = 100,
maxiter = 3000,
pcrossover = 0.8,
pmutation = 0.1,
elitism = 0,
monitor = TRUE
)
summary(myga)
plot(myga)
best_n <- binary2decimal(myga@solution[1, ])
cat("Best n:", best_n,
"\nValue:", (1 + 1/best_n)^best_n,
"\nError:", abs(exp(1) - (1 + 1/best_n)^best_n), "\n")
💠SIX
Copy Code
install.packages("datasets")
install.packages("caTools")
install.packages("party")
install.packages("dplyr")
install.packages("magrittr")
library(datasets)
library(caTools)
library(party)
library(dplyr)
library(magrittr)
data("readingSkills")
head(readingSkills)
set.seed(123)
samples_data <- sample.split(readingSkills$nativeSpeaker, SplitRatio = 0.8)
train_data <- subset(readingSkills, samples_data == TRUE)
test_data <- subset(readingSkills, samples_data == FALSE)
model <- ctree(nativeSpeaker ~ age + shoeSize + score, data = train_data)
plot(model)
💠SEVEN
Copy Code
require(graphics)
f <- function(x) (x - 1/3)^2
xmin <- optimize(f, c(0, 1), tol = 0.0001)
print(xmin)
optimize(function(x) ifelse((x > -1) & (x < 4), exp(-(x - 1)^2), 10), c(-5, 5))
fp <- function(x) { print(x); f(x) }
plot(f, -2, 5, ylim = c(0, 1), col = 2)
optimize(fp, c(-4, 20))
optimize(fp, c(-7, 20))
💠EIGHT
Copy Code
if (!require(forecast)) {
install.packages("forecast")
library(forecast)
}
if (!require(ggplot2)) {
install.packages("ggplot2")
library(ggplot2)
}
set.seed(123)
time_series_length <- 100
time_series <- ts(rnorm(time_series_length, mean = 10, sd = 5), frequency = 12)
plot(time_series,
main = "Synthetic Time Series Data",
ylab = "Value",
xlab = "Time",
col = "blue")
fit <- auto.arima(time_series)
forecast_horizon <- 12
forecast_result <- forecast(fit, h = forecast_horizon)
autoplot(forecast_result) +
ggtitle("ARIMA Forecasting") +
xlab("Time") +
ylab("Forecast Value") +
theme_minimal()
print(summary(fit))
print(forecast_result)
💠NINE
Copy Code
install.packages("dplyr")
install.packages("tibble")
library(dplyr)
library(tibble)
initial_state <- list(
current_time = 0,
events = data.frame(time = numeric(0), event = character()),
warm_up_time = 0,
data_collected = tibble(time = numeric(0), data = numeric(0)),
event_log = tibble(time = numeric(0), event = character())
)
# Function to schedule events
schedule_event <- function(state, event_time, event_description) {
new_event <- data.frame(time = event_time, event = event_description,
stringsAsFactors = FALSE)
state$events <- bind_rows(state$events, new_event) %>%
arrange(time)
return(state)
}
process_event <- function(state) {
if (nrow(state$events) == 0) {
return(state)
}
next_event <- state$events[1, ]
state$current_time <- next_event$time
state$event_log <- bind_rows(state$event_log,
tibble(time = state$current_time, event = next_event$event))
if (state$current_time >= state$warm_up_time) {
data_value <- rnorm(1)
state$data_collected <- bind_rows(state$data_collected,
tibble(time = state$current_time, data = data_value))
}
state$events <- state$events[-1, ]
return(state)
}
# Run simulation
state <- initial_state
state$warm_up_time <- 5
state <- schedule_event(state, 2, "event1")
state <- schedule_event(state, 4, "event2")
state <- schedule_event(state, 6, "event3")
state <- schedule_event(state, 7, "event4")
state <- schedule_event(state, 8, "event5")
while (nrow(state$events) > 0) {
state <- process_event(state)
}
print("Event Log")
print(state$event_log)
print("Data collected post warm-up interval")
print(state$data_collected)
💠TEN
Copy Code
if (!require("ggplot2")) {
install.packages("ggplot2")
}
library(ggplot2)
library(dplyr)
library(tibble)
# Initial state
initial_state <- list(
current_time = 0,
light_intensity = numeric(),
pupil_diameter = numeric(),
response_time = 1,
max_pupil_diameter = 8,
min_pupil_diameter = 2
)
# Function to update pupil diameter
update_pupil_diameter <- function(state, light_intensity) {
target_diameter <- state$max_pupil_diameter -
(light_intensity / log(10 + light_intensity)) *
(state$max_pupil_diameter - state$min_pupil_diameter)
if (length(state$pupil_diameter) == 0) {
current_diameter <- state$max_pupil_diameter
} else {
current_diameter <- state$pupil_diameter[length(state$pupil_diameter)]
}
new_diameter <- current_diameter +
(target_diameter - current_diameter) *
(1 - exp(-1 / state$response_time))
return(new_diameter)
}
# Simulation function
simulate_eye_response <- function(state, time_steps, light_changes) {
for (t in 1:time_steps) {
if (t <= length(light_changes)) {
state$light_intensity[t] <- light_changes[t]
} else {
state$light_intensity[t] <- state$light_intensity[t - 1]
}
state$pupil_diameter[t] <- update_pupil_diameter(state, state$light_intensity[t])
state$current_time <- state$current_time + 1
}
return(state)
}
# Parameters
time_steps <- 50
light_changes <- c(
rep(10, 10),
rep(50, 10),
rep(20, 10),
rep(80, 10),
rep(10, 10)
)
# Run simulation
state <- initial_state
state <- simulate_eye_response(state, time_steps, light_changes)
# Collect results
results <- tibble(
Time = 1:time_steps,
Light_Intensity = state$light_intensity,
Pupil_Diameter = state$pupil_diameter
)
# Plot
ggplot(results, aes(x = Time)) +
geom_line(aes(y = Light_Intensity * 0.1, colour = "Light Intensity"), size = 1) +
geom_line(aes(y = Pupil_Diameter, colour = "Pupil Diameter"), size = 1) +
scale_y_continuous(
sec.axis = sec_axis(~ . * 10, name = "Light Intensity (scaled)")
) +
labs(
y = "Pupil Diameter (mm)",
colour = "Legend",
title = "Simulation of Pupil Diameter Response to Light Intensity"
) +
theme_minimal()
🚀 Created with passion by balak #KeepCoding